通用banner
您当前的位置 : 首 页 > 新闻中心 > 行业新闻

南京电销公司用什么电话卡?

2020-09-26 19:18:52

南京电销公司用什么电话卡?南京电销公司电话卡办理联系主页电话!

6.png

随着人类社会的数字化进程不断深入,“联网”在今天已经是如“衣食住行”般的基础需求,业务、运维、联接的复杂度也与日俱增。通过引入AI,打造一张基于用户体验的智能化、全自动的网络,成为电信行业的共同追求。

而在硬币的另一面,一些问题也随之浮出了水面。比如AI特性的规模应用面临着模型泛化能力差、模型易老化、本地样本少等诸多挑战,从而拖慢了AI在电信网络中的整体普及速度。作为网络转型先驱者的华为,对此给出了“云地协同”这个答案。

“在将AI能力注入电信网络的旅程中我们发现,仅仅讨论算法问题、考虑如何用数学解决业务问题是不够的,还需要克服很多难点。比如一个模型如果不做管理和控制,半年时间精度就会下滑到原先的60%左右。我们希望‘把困难留给自己,把方便带给客户’,通过不断创新来推动AI在电信行业的快速规模部署,这也是此次提出云地协同解决方案的初衷。”在华为全联接大会2020期间的一场媒体圆桌上,华为网络人工智能(NAIE)产品部总经理韩雨发表示,云端与地端的联动,将使AI模型越用越准确。

活动上,他还发布了《AI使能自动驾驶网络——华为iMaster NAIE网络人工智能引擎技术白皮书》,该白皮书结合电信网络智能化的市场趋势大背景,阐述了华为在该领域的实践落地,包括华为自动驾驶网络解读、NAIE网络人工智能引擎以及典型应用场景探索等。

大势所趋:将AI引入电信行业

从18世纪至今300余年间,世界通过三次工业革命,完成了机械化、电气化、信息化的改造,每一次变革都驱动人类社会迈向新的发展纪元。如果说在21世纪还有哪一种技术可以和历次工业革命中的先导科技相提并论的话,那一定是AI技术。

作为一项通用目的技术,AI在上世纪七十年代便与空间技术、能源技术一起被誉为“世界三大尖端技术”,同时亦与基因工程、纳米科学一起被认为是“21世纪三大尖端技术”。经历了60余年起起伏伏,近年来AI技术步入成熟增长期,越来越多地与现实世界产生了碰撞,并迅速成为适用于大部分经济活动的基本生产力。

AI在电信行业同样广受青睐,产业上下游纷纷围绕于此展开布局。在国内,中国移动发布了九天人工智能平台,汇聚内外部AI能力,支撑移动各领域AI应用;中国电信致力于打造智能化“随愿网络”,通过AI赋能平台和传统设备的AI升级,改善用户体验、提升使用效率;中国联通发布了网络AI平台Cube-AI智立方,以提升网络智能水平、降本增效为目标。

在海外,西班牙电信发布了网络AI架构与Fast OSS架构,逐步建立自身的AI用例开发及运维能力;法国电信以AI/数据为核心推动网络智能化、重塑用户体验,作为2025战略的关键目标;德国电信则利用AI/ML建立了逐渐演进、开源、非集中化、以自治网络为目标的AI Program。

从ALL IP、ALL Cloud到ALL Intelligence,华为在电信网络架构创新上的探索实践从未停止。早在全云化战略实施过程中便尝试引入AI,以推动网络的自动、自优、自愈、自治。2018年9月,正式提出自动驾驶网络(AND)和5级定义,将AI嵌入到底层网元、中间层网络和上层云端乃至网络的整个生命周期中,以此来实现网络的“无人驾驶、永无故障”。2019年4月,正式发布iMaster NAIE网络AI云服务,成为迈向自动驾驶网络过程中的重要里程碑。

各大电信行业组织亦已将AI的应用推广纳入议程。比如TMF于2019年5月发布了自动驾驶网络白皮书,并成立自治网络工作组,今年2月对自动驾驶网络技术架构立项。CCSA3GPP、GSMA、ETSI等组织也陆续发布了自动驾驶网络相关的研究建议、白皮书、案例报告

在产业界各方的积极推动下,AI技术已在电信网络的规划、建设、维护、优化等各个环节开启了使能之旅,目前主要聚焦解决感知预测、根因分析和优化控制等问题。典型的AI特性应用像是站点智能节能、故障识别及根因定位、Massive MIMO模式优化,都已初见成效。

不过经实践发现,AI在网络中走向规模部署的过程中尚存不少挑战。韩雨发例举道,首先是模型泛化能力差,很多场景的AI模型都是一站一模型,如无线流量预测,每个站点的模型都需要根据本地个性化的数据进行训练,而本地资源受限,导致AI模型规模应用难。

其次,模型易老化。一些场景会发生因泛化或数据偏移而导致的模型精度下降问题,如无线流量预测、DC PUE优化等,AI模型都需要进行重训练。AI模型训练一般会占用较多系统资源,如在网元或网管实施重训练任务,训练效率低,同时也可能会影响设备性能。

第三,样本少,不出局。部分场景单局点样本量少,不足以支撑模型训练。以核心网KPI异常检测为例,由于单局点发生异常频率很少,训练需要的样本量不够。需要能够汇聚所有局点的全量样本信息,可能还需辅以联邦学习等技术,才能训练得到满足业务精度要求的AI模型。

最后,试错成本高。设计的模型如果直接在真实环境上使用,可能存在较大风险。比如数据中心设计方案,一旦落地,结果基本不可逆。

针对于此,华为基于iMaster NAIE创造性地提出云地协同解决方案,以加速AI特性的规模应用。韩雨发介绍说,云地协同是指在运行状态下,云端和地端一起协作完成数据样本上云、模型状态管理、模型重训练、模型/知识下发、择优更新等一系列的闭环任务,同时把云端汇聚的全局网络知识经验、全量数据训练得到的高精度模型,持续注入地端,支撑电信网络智能迭代升级,让网络越来越聪明。其中,云端是指部署在公有云、合营云或HCS上的NAIE云端智能;地端是指集成在网络管控单元的网络AI,以及网元设备中的网元AI。


标签

最近浏览: